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Abstract
In this paper, we introduce the condition of θ -locality which can be used as
a substitute for microcausality in quantum field theory on noncommutative
spacetime. This condition is closely related to the asymptotic commutativity
which was previously used in nonlocal QFT. Heuristically, it means that
the commutators of observables behave at large spacelike separation like
exp(−|x − y|2/θ), where θ is the noncommutativity parameter. The rigorous
formulation given in the paper implies averaging fields with suitable test
functions. We define a test function space which most closely corresponds
to the Moyal �-product and prove that this space is a topological algebra under
the star product. As an example, we consider the simplest normal ordered
monomial : φ � φ : and show that it obeys the θ -locality condition.

PACS numbers: 11.10.Nx, 11.10.Cd, 03.07.+k, 02.10.Hh

1. Introduction

In this paper, we discuss the problem of formulating the causality principle in quantum
field theory on noncommutative spacetime. A noncommutative spacetime of d dimensions
is defined by replacing the coordinates xµ of R

d by Hermitian operators x̂µ satisfying the
commutation relations

[x̂µ, x̂ν] = iθµν, (1)

where θµν is a real antisymmetric d×d matrix, which will henceforth be assumed constant as in
most papers on this subject. The Weyl–Wigner correspondence between algebras of operators
and algebras of functions enables one to consider quantum field theories on noncommutative
spacetime as a form of nonlocal QFT described by an action, in which the ordinary product of
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fields is replaced by the Moyal–Weyl–Groenewold star product

(f �θ g)(x) = f (x) exp

(
i

2
←−
∂µθµν−→∂ν

)
g(x)

= f (x)g(x) +
∞∑

n=1

(
i

2

)n 1

n!
θµ1ν1 · · · θµnνn∂µ1 · · · ∂µn

f (x)∂ν1 · · · ∂νn
g(x) (2)

(see, e.g., [1] for more details). Recent interest in noncommutative QFT was caused mainly
by the fact that it occupies an intermediate position between the usual quantum field theory
and string theory [2]. At present, considerable study is being given not only to actual models,
but also to the conceptual framework of this theory. In particular, in [3–6], efforts were made
to derive a corresponding generalization of the axiomatic approach [7–9]. Much attention is
being given to the nonlocal effects inherent in noncommutative QFT. A comparison of the
theories in which the time coordinate is involved in the noncommutativity and the theories
with θ0ν = 0 shows that these latter are preferable because they obey unitarity. In [3, 10, 11],
it was argued, however, that in the case of space–space noncommutativity the usual causal
structure with the light cone is replaced by a structure with a light wedge respecting the
unbroken SO(1, 1) × SO(2) symmetry. Since quantum fields are singular by their very
nature, a comprehensive study of the question of causality must include finding an adequate
space of test functions. In the standard formalism [7–9], quantum fields are taken to be
tempered operator-valued distributions, which are defined on the Schwartz space S consisting
of all infinitely differentiable functions of fast decrease. As noted in [3], the assumption of
temperedness is open to the question in noncommutative QFT because of UV/IR mixing.
Moreover, the correlation functions of some gauge-invariant operators admit an exponential
growth at energies much larger than the noncommutativity scale [12], and this is an argument
in favour of analytic test functions. The very structure of the star product (2), which is defined
by an infinite-order differential operator, suggests that analytic test functions may be used in
noncommutative QFT along with or instead of Schwartz’s S .

In [13], we argued that the appropriate test function spaces must be algebras under the
Moyal �-product and showed that the spaces Sβ

α of Gelfand and Shilov [14] satisfy this
condition if and only if α � β. The space Sβ

α consists of the smooth functions that decrease
at infinity faster than exponentially with order 1/α and a finite type, and whose Fourier
transforms behave analogously but with order 1/β. Clearly, all these spaces are contained in
the space S , which can be thought of as S∞

∞ . As shown in [13], the series (2) is absolutely
convergent for any f, g ∈ Sβ

α if and only if β < 1/2. However, the star multiplication has a
unique continuous extension to any space Sβ

α with α � β. It is natural to use the spaces with
β < 1/2 as an initial functional domain of quantum fields on noncommutative spacetime,
but this does not rule out a possible extension to a larger test function space depending on
the model under consideration. Recently, the use of spaces Sβ = S

β
∞, β < 1/2, was also

advocated by Chaichian et al [15].
If β < 1, then the test functions are entire analytic, and the notion of support loses

its meaning for the generalized functions that are defined on Sβ
α or Sβ and constitute their

dual spaces S ′β
α and S ′β . Nevertheless, some basic theorems of the theory of distributions

can be extended to these generalized functions because they retain the property of angular
localizability [16, 17]. This property leads naturally to the condition of asymptotic
commutativity, which was used in nonlocal QFT instead of local commutativity and was
shown to ensure the existence of CPT-symmetry and the standard spin–statistics relation for
nonlocal fields [18]. We already discussed in [19] how some of these proofs with test functions
in S0 can be adapted to noncommutative QFT. Here we intend to argue that quantum fields
living on noncommutative spacetime indeed satisfy the asymptotic commutativity condition
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and to explain the interrelation between this condition and the fundamental length scale which
is determined by the noncommutativity parameter θ . To avoid notational clutter, we will use
the one-index spaces of type S, although the two-index spaces provide a wider distributional
framework.

In section 2, we introduce the test function space S 1/2 which most closely corresponds
to the Moyal star product. All spaces Sβ with β < 1/2 are contained in this space, but
it is smaller than S1/2 and may be defined as a maximal space with the property that the
series (2) is absolutely convergent for any pair of its elements. We also prove that S 1/2 is a
topological algebra under the star product. In section 3, two classes of spaces related to Sβ,S β

and associated with cones in R
d are defined, and it is shown that these spaces are algebras

under the �-product for β < 1/2 in the former case and for β � 1/2 in the latter case. In
section 4, the exact formulation of the asymptotic commutativity condition is given and its
physical consequences are briefly outlined. In the same section, we introduce the notion of
θ -locality. In section 5, we take, as a case in point, the normal ordered �-square : φ � φ : of
the free scalar field φ and show that it obeys the conditions of asymptotic commutativity and
θ -locality. Section 6 contains concluding remarks.

2. Test function spaces adequate to the Moyal star product

An advantage of the spaces Sβ over S is their invariance under the action of infinite-order
differential operators, the set of which increases with decreasing β. In what follows, we
consider functions defined on R

d and use the usual multi-index notation:

∂κ = ∂ |κ|

∂x
κ1
1 · · · ∂x

κd

d

, |κ| = κ1 + · · · + κd, κκ = κ
κ1
1 · · · κκd

d ,

where κ ∈ Z
d
+. Let β � 0, B > 0 and N be an integer. We denote by S

β,B

N (Rd) the Banach
space of infinitely differentiable function with the norm

‖f ‖B,N = sup
x,κ

(1 + |x|)N |∂κf (x)|
B |κ|κβκ

. (3)

We also write S
β,B

N for this space when this cannot lead to confusion. Let us consider the
operator ∑

λ∈Z
d
+

cλ∂
λ (4)

assuming that
∑

λ cλz
λ has less than exponential growth of order �1/β and type b. In

treatise [14], it was shown that under the condition b < β/(e2B1/β) the operator (4) maps the
space S

β,B

N to S
β,B ′
N , where B ′ = eβB. This result can be improved by using the inequality

(k + l)k+l � 2k+lkkll . The assumption of order of growth, together with the Cauchy inequality,

implies that |cλ| � C
∏d

j=1 r
−λj

j ebr
1/β

j for any rj > 0. Locating the minimum with respect to
rj , we obtain

|cλ| � C

(
be

β

)β|λ| 1

λβλ
. (5)

If f ∈ S
β,B

N , then we have

(1 + |x|)N
∣∣∣∣∣∂κ

∑
λ

cλ∂
λf (x)

∣∣∣∣∣ � ‖f ‖B,N

∑
λ

cλB
|κ+λ|(κ + λ)β(κ+λ)

� ‖f ‖B,N2β|κ|B |κ|κβκ
∑

λ

cλ2β|λ|B |λ|λβλ. (6)
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Suppose that

b <
β

2eB1/β
, (7)

then the last series in (6) converges by virtue of the inequality (5). Taking B ′ � 2βB, we
obtain

∥∥∑
λ cλ∂

λf
∥∥

B ′,N � C ′‖f ‖B,N and conclude that the operator (4) maps S
β,B

N to S
β,B ′
N

continuously.
Now we apply this consideration to the operator

exp

(
i

2
θµν ∂

∂x
µ

1

∂

∂xν
2

)
=

∞∑
n=0

(
i

2

)n 1

n!
θµ1ν1 · · · θµnνn

∂

∂x
µ1
1

· · · ∂

∂x
µn

1

∂

∂x
ν1
2

· · · ∂

∂x
νn

2

. (8)

Clearly, the order of the entire function exp
(
(i/2)θµνZ1µZ2ν

)
is equal to 2 and the type is less

than or equal to |θ |/4, where

|θ | =
∑
µ<ν

|θµν |.

Hence we have the following theorem.

Theorem 1. Let B < 1/
√

e|θ |. Then the operator (8) maps the space S
1/2,B

N (R2d) continuously

into the space S
1/2,B ′
N (R2d), where B ′ = B

√
2. The series obtained by applying this operator

to a function f ∈ S
1/2,B

N (R2d) is absolutely convergent in the norm ‖ · ‖B ′,N .

We define the countably-normed spaces S β by

S β =
⋂
N,B

S
β,B

N . (9)

A sequence fn converges to f ∈ S β if ‖fn − f ‖B,N → 0 for every B > 0 and for every N.
The foregoing leads directly to the following result.

Theorem 2. The operator (8) maps the space S 1/2(R2d) to itself continuously. Hence it is
well defined and continuous on its dual space S ′1/2(R2d). The series obtained by applying
this operator to f ∈ S 1/2(R2d) is absolutely convergent in each of the norms of S 1/2(R2d).

Below is given a description in terms of the Fourier transform, which shows that the
operator (8) is bijective on S 1/2 and so it is a linear topological isomorphism of S 1/2 as well
as of S ′1/2. Analogous statements certainly hold for any S β with β � 1/2, but S 1/2 is
the largest of these spaces and most closely corresponds to the operator (8) and hence to the
Moyal product (2). In what follows, we use the notation

∂x1θ∂x2 = θµν ∂

∂x
µ

1

∂

∂xν
2

.

The map S β(Rd)×S β(Rd) → S β(Rd) that takes each pair (f, g) to the function f � g can
be considered as the composite map

S β(Rd) × S β(Rd)
⊗−→ S β(R2d)

e(i/2)∂x1 θ∂x2−→ S β(R2d)
m̂−→ S β(Rd), (10)

where the first arrow takes (f, g) to the function (f ⊗ g)(x1, x2) = f (x1)g(x2), the second
arrow is the action of operator (8) and the third arrow is the restriction of elements of S β(R2d)

to the diagonal x1 = x2. The first map is obviously continuous, and we now argue that the
third map is also continuous. Although the spaces S β are not invariant under the Fourier
transformation, they closely resemble the Schwartz space S in their other properties. These
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spaces are complete and metrizable, i.e., belong to the class of Fréchet spaces. Furthermore,
they are Montel spaces (or perfect in nomenclature of [14]) and nuclear. An analogue of
Schwartz’s kernel theorem states that S β(R2d) coincides with the completion of the tensor
product S β(Rd) ⊗π S β(Rd) equipped with the projective topology. Therefore, the set of
continuous bilinear maps S β(Rd) × S β(Rd) → S β(Rd) can be identified with the set of
continuous linear maps S β(R2d) → S β(Rd). In particular, the linear map m̂ corresponds to
the ordinary pointwise multiplication m: (f, g) → f · g, and its continuity follows from (and
amounts to) the fact that S β(Rd) is a topological algebra under the ordinary multiplication.
We thus get the following theorem.

Theorem 3. The spaces S β(Rd) with β � 1/2 are topological algebras under the Moyal
�-product. If f, g ∈ S β(Rd), where β � 1/2, then the series (2) is absolutely convergent in
this space.

Another way of proving this is to estimate the expression (1 + |x|)N |∂κ(f � g)(x)| with
the use of Leibniz’s formula. Such a computation is almost identical to the proof of theorem 4
in paper [13] dealing with the spaces Sβ

α .
The Gelfand–Shilov spaces Sβ are constructible from the spaces S

β,B

N in the following
way:

Sβ =
⋃
B>0

Sβ,B, Sβ,B =
⋂

B ′>B,N∈Z+

S
β,B ′
N . (11)

A sequence fn is said to be convergent to an element f ∈ Sβ if there is a B > 0 such that all
fn and f are contained in the space Sβ,B and fn → f in each of its norms.

Gelfand and Shilov [14] have shown that the spaces Sβ are algebras under the pointwise
multiplication and that this operation is separately continuous in their topology. Mityagin [20]
has proved that these spaces are nuclear. Another proof is given in [21], where in addition
their completeness is established and the corresponding kernel theorem is proved. From this
theorem, it follows that the set of separately continuous bilinear maps Sβ(Rd) × Sβ(Rd) →
Sβ(Rd) is identified with the set of continuous linear maps Sβ(R2d) → Sβ(Rd). We combine
these facts in a manner analogous to that used in the case of S β and suppose that β satisfies
the strict inequality β < 1/2. Then eb|z|1/2 � Cεeε|z|1/β

, where ε > 0 can be taken arbitrarily
small, and we obtain the following result.

Theorem 4. The operator (8) maps every space Sβ(R2d) with β < 1/2 to itself continuously.
The spaces Sβ(Rd), where β < 1/2, are algebras under the Moyal �-product, and the star
multiplication is separately continuous under their topology. If f, g ∈ Sβ(Rd), then the series
(2) converges absolutely in this space.

The Fourier transformation F : f (x) → f̂ (p) = ∫
f (x) eip·x dx converts Sβ to the space

Sβ which consists of all smooth functions satisfying the inequalities

|∂κh(p)| � Cκ e−|p/B|1/β

, for some B(h) > 0 and for every κ,

whereas Sβ = F[S β] consists of the functions satisfying

|∂κh(p)| � Cκ,B e−|p/B|1/β

, for each B > 0 and for every κ.

The operator (8) turns into the multiplication of the Fourier transforms by the function

e−(i/2)p1θp2 , where p1θp2
def= p1µθµνp2ν . (12)

Clearly, this function is a multiplier of Sβ(R2d) and of Sβ(R2d) for any β. Hence the operator
(8) admits continuous extension to all these spaces, and this extension is unique because
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S0 = C∞
0 is dense in each of them. It follows that the �-product also has a unique continuous

extension to the spaces with β > 1/2. This extension is defined by

(f × g)(x) = 1

(2π)2d

∫ ∫
f̂ (q)ĝ(p) e−iqx−ipx−(i/2)qθp dq dp

and is often called the ‘twisted product’ [22]. The uniqueness of the extension entitles us to
identify the operation (f, g) → f × g with the �-multiplication and to say that S β and Sβ

are star product algebras for any β. However, proposition 2 in [13] shows that every space
S β with β > 1/2 and every Sβ with β � 1/2 contain functions for which the series (2) is not
convergent in the topology of these spaces.

3. Test function algebras over cones in R
d

The operator (8) is nonlocal, but when acting on the functionals defined on S β or on Sβ , it
preserves the property of a rapid decrease along a given direction of R

2d if a functional has
such a property. In order for this statement to be given a precise mathematical meaning, we
use spaces which are related to S β(Rd) and Sβ(Rd), but associated with cones in R

d . Such
sheaves of spaces arise naturally in nonlocal quantum field theory, see [16, 17].

Let U be an open connected cone in R
d . We denote by S

β,B

N (U) the space of all infinitely
differentiable functions on U with the finite norm

‖f ‖U,B,N = sup
x∈U ;κ

(1 + |x|)N |∂κf (x)|
B |κ|κβκ

. (13)

The spaces S β(U), Sβ,B(U) and Sβ(U) are constructed from S
β,B

N (U) by formulae analogous
to (9) and (11). If β � 1, then all elements of these spaces can be continued analytically to
the whole of C

d and this definition can be rewritten in terms of complex variables. Using the
Taylor and Cauchy formulae, it is easy to verify (see, e.g., [16] for details) that the space Sβ(U)

with β < 1 coincides with the space of all entire analytic functions satisfying the inequalities

|f (z)| � CN(1 + |x|)−N ed(Bx,U)1/(1−β)+|By|1/(1−β)

, N = 0, 1, . . . , (14)

where z = x + iy, d(x, U) = infξ∈U |x − ξ | is the distance from x to U and the constants
CN,B depend on f . This space is independent of the choice of the norm | · | on R

d , because
all these norms are equivalent. We also note that d(Bx,U) = Bd(x,U) since U is a cone.
The analytic continuations of the elements of S β(U) satisfy analogous inequalities for every
B and for every N with constants CB,N instead of CN . This representation makes it clear that
the spaces Sβ(U) and S β(U), where β < 1, are algebras under the ordinary multiplication.

The arguments used in the proofs of theorems 1 and 2 are completely applicable to the
spaces over cones and furnish the following result.

Theorem 5. Let U be an open cone in R
2d . If B < 1/

√
e|θ |, then the operator (8) maps the

normed space S
1/2,B

N (U) to S
1/2,B ′
N (U), where B ′ = B

√
2, and is bounded. Each of the spaces

S β(U) with β � 1/2 and Sβ(U) with β < 1/2 is continuously mapped by this operator into
itself. Consequently, it is defined and continuous on their dual spaces S ′β(U), S ′β(U). The
series obtained by applying the operator (8) to the elements of these spaces are absolutely
convergent.

As is shown in [21], the spaces Sβ,B(U) are nuclear. It immediately follows that S β(U)

and Sβ(U) also have this property. Theorem 6 of [21] states that the space Sβ(U × U)

coincides with the completion of the tensor product Sβ(U) ⊗ι Sβ(U) endowed with the
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inductive topology. Let f, g ∈ Sβ(U). In complete analogy to the reasoning of section 2, we
can decompose the map (f, g) → f � g as follows:

Sβ(U) × Sβ(U)
⊗−→ Sβ(U × U)

e(i/2)∂x1 θ∂x2−→ Sβ(U × U)
m̂−→ Sβ(U). (15)

The former map in (15) is separately continuous and the latter two are continuous. (As before,
we denote by m̂ the linear map that canonically corresponds to the ordinary product.) A similar
representation certainly holds for the spaces S β(U), and in that case we have even a simpler
situation because these are Fréchet spaces and we need not distinguish between separately
continuous and continuous linear maps. We thus get the following theorem.

Theorem 6. Let U be an open cone in R
d . Every space S β(U) with β � 1/2 is a topological

algebra under the Moyal �-product. If β < 1/2, then Sβ(U) also is an algebra with respect to
the Moyal product and the �-multiplication is separately continuous under its topology. The
series (2) converges absolutely in these spaces for each pair of their elements.

The special convenience of Sβ (and Sβ
α ) is that the generalized functions defined on

these spaces of analytic test functions have been shown to possess the property of angular
localizability, which is specified in the following manner. We say that a functional v ∈ S ′β(Rd)

is carried by a closed cone K ⊂ R
d if v admits a continuous extension to every space Sβ(U),

where U ⊃ K\{0}. This property is equivalent to the existence of a continuous extension to
the space

Sβ(K) =
⋃

U⊃K\{0}
Sβ(U) (16)

endowed with the topology induced by the family of injections Sβ(U) → Sβ(K). When such
an extension exists, it is unique because Sβ is dense in Sβ(U) and in Sβ(K) by theorem 5 of
[23]. The representation (14) makes it clear that outside K elements of Sβ(K) can have an
exponential growth of order 1/(1 − β) and a finite type. Hence we are entitled to interpret
the existence of a nontrivial carrier cone of v ∈ Sβ(Rd) as a falloff property of this functional
in the complementary cone or more specifically as a decrease faster than exponentially with
order 1/(1 − β) and maximum type. Moreover, the relation

S ′β(K1 ∩ K2) = S ′β(K1) ∩ S ′β(K2) (17)

holds, which implies that every element of S ′β(Rd) has a unique minimal closed carrier cone
in R

d . This fact has been established in [16, 17] for 0 < β < 1, and a detailed proof of the
relation (17) for the most complicated case β = 0 is available in [21]. Clearly, the spaces
Sβ(K) over closed cones also are algebras under the Moyal �-product if β < 1/2.

4. Asymptotic commutativity and θ-locality

It is believed that a mathematically rigorous theory of quantum fields on noncommutative
spacetime shall adopt the basic assumption of the axiomatic approach [7–9] that quantum
fields are operator-valued generalized functions with a common, dense and invariant domain
D in the Hilbert space of states. The optimal test function spaces may be model-dependent,
but the above consideration shows that in any case the space S 1/2 and the spaces Sβ with
β < 1/2, as well as their related spaces over cones, are attractive for use in noncommutative
QFT.

Analytic test functions were used in nonlocal field theory over many years and it would be
reasonable to draw this experience. The axiomatic formulation of nonlocal QFT developed in
[16–18] is based on the idea of changing local commutativity to an asymptotic commutativity
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condition, which means that the commutator or anticommutator of any two fields of the theory
is carried by the cone

V × R
d = {(x, x ′) ∈ R

2d : (x − x ′)2 � 0}. (18)

In more exact terms, if the fields φ,ψ are defined on the test function space Sβ(Rd), β < 1,
then either

〈�[φ(x), ψ(x ′)]−�〉 (19)

or

〈�[φ(x), ψ(x ′)]+�〉 (20)

is carried by the cone (18) for all �,� ∈ D. The matrix elements (19), (20) can be regarded
as generalized functions on R

d because Sβ is nuclear and the relation Sβ(Rd) ⊗̂ι Sβ(Rd) =
Sβ(R2d) holds. The asymptotic commutativity condition becomes weaker with decreasing β.
For β = 0, it means that the commutator of observable fields averaged with test functions in
S0 decreases at spacelike separation no worse than exponentially with order 1 and maximum
type. Together with other Wightman axioms, this condition ensures the existence of the CPT-
symmetry operator and the normal spin–statistics relation for the nonlocal quantum fields. The
proofs [18] of these theorems use the notion of the analytic wave front set of distributions in an
essential way. This generalization of the local commutativity axiom also preserves the cluster
decomposition property of the vacuum expectation values. As shown in [24], it preserves
even the strong exponential version of this property if the theory has a mass gap. This makes
possible interpreting the nonlocal QFT subject to the asymptotic commutativity condition in
terms of the particle scattering because the cluster decomposition property plays a key role in
constructing the asymptotic states and the S-matrix.

In [19], we discussed some peculiarities of using the analytic test functions in quantum
field theory on noncommutative spacetime for the case of a charged scalar field and space–space
noncommutativity. We have shown that this theory has CPT-symmetry if it satisfies a suitably
modified condition of asymptotic commutativity. This modification uses the generalization
[21, 25] of the notion of carrier cone to the bilinear forms.

The test function spaces Sβ, β < 1/2, are convenient for use in quantum field theory on
noncommutative spacetime because they are algebras under the �-product and the generalized
functions defined on them have the property of angular localizability, which enables one
to apply analogues of some basic theorems of Schwartz’s theory of distributions. Moreover,
Sβ(Rd) are invariant under the affine transformations of coordinates and the spaces of this kind
over the light cone are invariant under the Poincaré group. The asymptotic commutativity
provides a way of formulating causality in noncommutative QFT, but it is insensitive to
the magnitude of the noncommutativity parameter which determines the fundamental length
scale. The above analysis suggests that a more accurate formulation can be obtained by using
spaces S1/2,B . The nonlocal effects in quantum field theory on noncommutative spacetime
are determined by the structure of the Moyal �-product, and one might expect that in this
theory each of the matrix elements (19) (or (20) for unobservable fields) admits a continuous
extension to the space

S1/2,B(V × R
d), where B ∼ 1√|θ | . (21)

(In general, B may depend on the fields φ,ψ and the states �,�.) This condition will be
called θ -locality. Clearly, it is stronger than the asymptotic commutativity condition stated for
β < 1/2, but it is also consistent with the Poincaré covariance. Conceivably, the θ -locality
expresses the absence of acausal effects on scales much larger than the fundamental scale
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� ∼ √|θ |. If such is the case, this assumption might be called macrocausality. It should be
emphasized that we do not assume here that the fields are defined only on the analytic test
functions. It is quite possible that their matrix elements are usual tempered distributions. In
other words, we use S1/2,B as a tool for formulating causality rather than as the functional
domain of definition of fields. In the next section, we reconsider from this standpoint a typical
example which was used in [26, 27] for showing the violation of microcausality in quantum
field theory on noncommutative spacetime.

5. An example

Let φ be a free neutral scalar field of mass m in a spacetime of d dimensions and let

O(x) ≡: φ � φ : (x) = lim
x1,x2→x

: φ(x1)φ(x2) :

+
∞∑

n=1

(
i

2

)n 1

n!
θµ1ν1 · · · θµnνn lim

x1,x2→x
: ∂µ1 · · · ∂µn

φ(x1)∂ν1 · · · ∂νn
φ(x2):. (22)

Every term in (22) is well defined as a Wick binomial. Chaichian et al [26] and Greenberg
[27] studied the question of microcausality in noncommutative QFT for the choice O as a
sample observable. Specifically, they considered the matrix element

〈0|[O(x),O(y)]−|p1, p2〉
at x0 = y0. In the case of space–space noncommutativity, with θ12 = −θ21 �= 0 and the
other elements of the θ -matrix equal to zero, the commutator [O(x),O(y)]− vanishes in the
light wedge (x0 − y0)2 < (x3 − y3)2, but Greenberg found that [O(x), ∂νO(y)]− fails to
vanish outside this wedge and so violates microcausality. We shall show that nevertheless the
θ -locality condition is fulfilled for this observable and this result holds irrespectively of the
type of noncommutativity.

First, we calculate the vacuum expectation value

W (x, y; z1, z2) = 〈0|O(x)O(y) : φ(z1)φ(z2) : |0〉. (23)

We use the Wick theorem and express

〈0| : φ(x1)φ(x2) :: φ(y1)φ(y2) :: φ(z1)φ(z2) : |0〉
in terms of the two-point function

w(x − y) = 〈0|φ(x)φ(y)|0〉 = 1

(2π)d−1

∫
e−ik·(x−y)ϑ(k0)δ(k2 − m2) dk.

Applying then the relation

lim
x1,x2→x

exp

(
i

2
∂x1θ∂x2

)
eik·x1 eip·x2 ≡ eik·x � eip·x = e−(i/2)kθpei(k+p)·x,

we obtain

W (x, y; z1, z2) = 4
∫

dk dp1 dp2

(2π)3(d−1)
ϑ(k0)δ(k2 − m2)

2∏
i=1

ϑ
(
p0

i

)
δ
(
p2

i − m2
)

× cos

(
1

2
kθpi

)
e−ik·(x−y)−ip1·(x−z1)−ip2·(y−z2) + (z1 ↔ z2). (24)

This formal derivation should be accompanied by a comment. The function

cos

(
1

2
kθp1

)
cos

(
1

2
kθp2

)
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is a multiplier for the Schwartz space S , and hence the right-hand side of (24) is well defined
as a tempered distribution. This distribution is obtained by applying the operator

cos
(

1
2∂xθ∂z1

)
cos

(
1
2∂yθ∂z2

)
(25)

to the distribution

4
∫

dk dp1 dp2

(2π)3(d−1)
ϑ(k0)δ(k2 − m2)

2∏
i=1

ϑ
(
p0

i

)
δ
(
p2

i − m2
)

e−ik·(x−y)−ip1·(x−z1)−ip2·(y−z2)

+ (z1 ↔ z2).

By theorem 2, the operator (25) is defined and is continuous on S 1/2(R4d) (and on any space
Sβ(R4d) with β < 1/2) and the power series expansion of (24) in θ is weakly convergent to
W in the dual space S ′1/2. This implies the strong convergence because S 1/2 is a Montel
space. However, that is not to say that this expansion converges to W in the topology of the
space S ′ of tempered distributions.

Using (24), we obtain

〈0|[O(x),O(y)]− : φ(z1)φ(z2) : |0〉

= 4
∫

dk dp1 dp2

(2π)3(d−1)
ε(k0)δ(k2 − m2)

2∏
i=1

dθ
(
p0

i

)
δ
(
p2

i − m2
)

× cos

(
1

2
kθpi

)
e−ik·(x−y)−ip1·(x−z1)−ip2·(y−z2) + (z1 ↔ z2), (26)

which agrees with formula (7) of [27].

Theorem 7. The restriction of the distribution (26) to S1/2 has a continuous extension to the
space S1/2,B(V × R

3d), where B < 1/
√

e|θ | and

V × R
3d = {(x, y, z1, z2) ∈ R

4d : (x − y)2 > 0}. (27)

A fortiori, the restriction of this distribution to any space Sβ(R4d) with β < 1/2 is strongly
carried by the closed cone V × R

3d .

Proof. Let B ′ = B
√

2. The restriction of (26) to S1/2,B ′
(R4d) is obtained by applying the

operator (25) to the restriction of

D(x, y; z1, z2) ≡ 〈0|[: φ2 : (x), : φ2 : (y)]− : φ(z1)φ(z2) : |0〉
= 4i�(x − y)w(x − z1)w(y − z2) + (z1 ↔ z2). (28)

Clearly, D(x, y; z1, z2) vanishes for (x − y)2 < 0 and the restriction D|S1/2,B ′
(R4d) has a

continuous extension D̃ to the space S1/2,B ′
(V × R

3d). This extension can be defined by
(D̃, f ) = (D, χf ), where χ is a multiplier of the Schwartz space, which is equal to 1 on an
ε-neighbourhood of V̄ × R

3d and to zero outside the 2ε-neighbourhood. Such a multiplier
satisfies the uniform estimate |∂κχ | � Cκ , and the multiplication by χ maps S1/2,B ′

(V × R
3d)

into S (R4d) continuously. By theorem 5, applying (25) to D̃, we obtain a continuous extension
of the functional (26) to the space S1/2,B(V × R

3d). This proves theorem 7. We point out
once again that this theorem holds for any matrix θ and in particular for both space–space and
spacetime noncommutativity. �



Noncommutativity and θ -locality 14603

6. Concluding remarks

Our analysis shows that the θ -locality condition or the weaker condition of asymptotic
commutativity for the restrictions of fields to the test function spaces Sβ, β < 1/2, can
serve as a substitute of microcausality in quantum field theory on noncommutative spacetime
even though the fields are tempered. The character of singularity is certainly dependent on
the model, but multiplication by the exponential (12) alone cannot spoil temperedness. As
stressed in [6, 28], any attempt to replace microcausality by a weaker requirement must take
the theorem on the global nature of local commutativity into consideration. The Borchers
and Pohlmeyer version [29] of this theorem states that local commutativity follows from an
apparently weaker assumption that [φ(x), ψ(x ′)]± decreases at large spacelike separation
faster than exponentially of order 1. The example : φ � φ : discussed above demonstrates that
this theorem is inapplicable to the asymptotic commutativity condition and that this condition
does not imply local commutativity. The point is that the fast decrease at spacelike separation is
understood here differently than in [29], as a property of the field (anti)commutators averaged
with appropriate test functions. We have restricted our consideration to the specific matrix
element of the commutator, but the technique developed in [30] enables one to construct the
operator realization of : φ � φ : in the state space of φ and to prove that in this instance
the θ -locality condition is completely fulfilled. In combination with the usual relativistic
transformation law of states and fields, the asymptotic commutativity ensures the existence
of CPT-symmetry and the normal spin–statistics relation for nonlocal fields [18]. One might
expect that in noncommutative QFT similar conclusions can be deduced from a suitable
combination of the θ -locality and the twisted Poincaré covariance [6, 31] which has currently
received much attention.

Most, if not all, of the results established above for Sβ can readily be extended to the
spaces Sβ

α whose topological structure is even simpler. In particular, a theorem similar to
theorem 1 holds with S

1/2,B

α,A in place of S
1/2,B

N . Analogues of theorems 2 and 3 hold for

S β
α = ⋂

A,B S
β,B

α,A , where β � 1/2 and α > 1 − β. An analogue of theorem 4 is valid for

Sβ
α = ⋃

A,B S
β,B

α,A with β < 1/2 and α � 1 − β. Of course, analogues of theorems 5 and 6
hold with the same replacements.
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